
4.Hydrazino-6-ethyl-6,7-dihydro-8H-pyrimido[5,4-b][1,4]oxazin-7-one (XXVI). A 0.7-g 
(14 mmole) sample of hydrazine hydrate was added to 1.5 g (7 mmoles) of XVI in 30 ml of n- 
butyl alcohol, and the mixture was refluxed for 3 h. It was then cooled, and the precipi- 
tated substance was separated and washed on the funnel with water. Compounds XXVII and 
XXVIII were similarly obtained. Crystallization of XXVI from aqueous acetone gave the ace- 
tylidene derivative with mp 246-247 ~ (dec.). Found: C 53.0; H 6.1; N 27.8%. Cz~H:sNs02. 
Calculated: C 53.0; H 6.1; N 28.1%. 

4-Azido-6-ethyl-6,7-dihydro-SH-pyrimido[5,4-b][l,4]oxazin-7-one (XXIX). A solution of 
0.35 g (5 mmole) of NAN02 in 5 ml of water was added at 5 ~ in the course of 30 min to a solu- 
tion of 1 g (4.8 mmole) of hydrazine XXVI in 15 ml of 2 N hydrochloric acid after which the 
mixture was stirred for 1 h without cooling. The solid material was separated, and azide 
XXIX was washed on the funnel with water until the wash waters were neutral. 

Compounds XXX and XXXI were similarly obtained. 

4-Azido-6-ethyl-8-methyl-6,7-dihydro-8H-pyrimido[5,4-b][l,4]oxazin-7-one (XXXII). A 
0.41-g (1.86 mmole) sample of XXVI and 0.8 ml of methyl iodide were added to sodium methox- 
ide obtained from 0.04 g (1.86 mg-atom) of sodium in i0 ml of methanol, and the resulting 
solution was refluxed for 1 h. It was then evaporated to dryness, and the residual XXXII 

was washed with water. 
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PROTONATION OF PYRROLO[I,2-a]PYRIMIDINE DERIVATIVES 
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I. V. Persianova, Yu. N. Sheinker, 
M. V. Mezentseva, V. I. Shvedov, 
and A. N. Grinev 

UDC 547.759'859:543.422.25 

The protonation of pyrrolo[l,2-a]pyrimidine and 6,7,8,9-tetrahydropyrimido[l,2-a] 
indole derivatives in CFaCOOH (at--15 to + 25 ~ C) and in CFaCOOH/H~S04 (at 25 ~ ) was 
studied by PMR spectroscopy. The investigated compounds form monocations, the 
structure of which corresponds to the addition of a proton to the carbon atom of 
th pyrrole fragment in the a position to the bridge nitrogen atom. 

The high pharmacological activity of pyrazino[l,2-a]indole derivatives [1,2] and the 
creation of the original preparation pirazidol, which is an effective central nervous sys- 
tem (CNS) antidepressant [3], have stimulated research on the isosteric analogs of these 
systems, particularly pyrrolo[l,2-apyrimidine and pyrimido[l,2-a]pyrimidine and pyrimido 
[l,2-a]indole derivatives. The mechanism of the biological action of a number of neurotropic 
agents assumes interaction of the cationoid center of the antagonist with the acid function 
of the corresponding receptor [4], and data on the comparative proton-acceptor capacities 

S. Ordzhonikidze All-Union Scientific-Research Pharmaceutical-Chemistry Institute, Mos- 
cow. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 686-692, May, 1976. 
Original article submitted May 21, 1975. 

This material is protected by  c o p y ~ t  r ~ r e d  in ~ e  name ~ e n u m  Publ~hing Co~orat ion ,  227 West 1 7 ~  S ~ e e g  N e w  Y o r ~  ~ ~ I 
10011. N o  part ~ ~ i s  publication may be reproduced, stored in a f e d e r a l  ~ s t e m ,  or ~ansmit ted,  in any ~ r m  or by  any means, e lec~on~,  

J mechan~al,  p h o ~ c o p y i n ~  mWro f i lmm~ reco~ ing  or o ~ e r w ~ e ,  w i ~ o u t  w ~ t ~ n  permission ~ ~ e  publishe~ A copy  ~ ~ a r ~ l e  is 
available ~ o m  the pub l~her  ~ r  S Z  50. 

576 



of various centers in compounds of the type under consideration are therefore of substantial 
interest. 

A study of the protonation of azaindolizines [5] showed that in most cases addition of 
a proton in these systems occurs at the nitrogen atom of the "pyridine" type. Moreover, it 
has been observed that protonation of pyrrolo[l,2-a]pyridazine [5,6] takes place at the car- 
bon atoms of the pyrrole fragment in the 5 and 7 positions. These results make it possible 
to propose three possible structures for the conjugate acid of pyrrolo[l,2-a]pyrimidine: 

1 8 

. -fo,~q ~ H+II_H. ~ -forn] 

It 

N -form 

In order to establish the protonation center of this system we studied the spectra of 
the neutral molecules (in CCI~ and CDCI3) and the cations (in CF3COOH) and measured the ion- 
ization constants in nitromethane of 1-IV. 

, ~ 3  N R~ CH3 N - -  

I-I11 IV 

l R l = H  , R2=C6H5 [| RI=R2=CH3,  H !  RI=CH3, R2-~C2H~. 

The experimental data are presented in Tables 1-3. 

Two doublets belonging to the protons of the pyrrole fragment in the 6 and 8 positions 
(J~,s= 1.5 Hz) are distinctly isolated in the spectrum of the neutral I molecule in CC14. 
In analogy with the spectra of indolizine derivatives and 5-, 6-, and 7-azaindolizines [7,8], 
the doublet located at weaker field was assigned to the C6--H proton. The Cs--H signal in 
the spectra of 6-substituted pyrrolo[l,2-a]pyrimidines (II, III) is observed as a singlet at 
6.23-6.28 ppm. The C3--H signal in the spectra of 1-IV is found at weaker field as compared 
with the signals of the protons of the pyrrole fragment and is a quartet. The splitting is 

3-~ ' l i  ,I 6 - c %  

~ /\ I LL 

a 3 - H  7 "CH 3 

ppm 

Fig. i. PMR spectra of 2,4,6,7-tetramethylpyr- 
rolo[l,2-a]pyrimidine (II): a) in CDCI3; b) in 
CF3COOH; e) in CF3COOH/CF3COOD (2:3). 
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due to spin--spin coupling (SSC) with the protons of the methyl group in the 4 position, the 
signal of which is observed as a doublet (J3-H,~-CH3 = 0.9 Hz) in the spectra of I and IV 
(Fig. 2). The assignment of the signals of the methyl groups in the 2 and 4 positions was 
made on the basis of a comparison of the spectrum of I with the spectra of III and IV. 

The introduction of an alkyl substituent in the pyrrole ring leads to an increase in 
the shielding of the methyl group attached to C=. The shift of the C4--CH3 signal to the 
weak-field region observed in this case can be explained by the steric effect of the methyl 
group in the "peri" position (Ca--CH3). The broadening of both signals, which masks split~ 
ting of the C~--CH3 signal due to SSC with the proton in the 3 position, is evidently as- 
sociated with this effect. The assignment of the signals of the methyl groups of the pyrrole 
fragment follows unambiguously from a comparison of the spectra of If-IV. 

An examination of the spectra of solutions of I-III in CF3COOH (at 25 ~ ) shows that one 
form of the conjugate acid corresponding to the addition of a proton to the carbon atom in 
the 6 position (structures I~-III~) is formed under these conditions. 

A quartet with an intensity of one proton unit (5 = 5.50-5.53 ppm), which was assigned 
to the proton attached to the Ca, is observed in the spectra of cations ll~-llle (Fig. i). 

~H3+ R~ H 

I ~ - I I I  

The signal of the methyl group in this position is observed as_ a doublet at 1.85 ppm 

(Js-H,6-CHs = 7.5 Hz). 

The signal of the proton attached to C8 in the spectra of both cations is shifted to 
the weak-field region relative to the neutral molecule (A~8 = 0.73 ppm). Close values of the 
weak-fleld shift are characteristic for the B protons of the pyrrole ring in the ~ forms of 
the conjugate acids of the indolizine derivatives (A~I = 0.7-0.9 ppm) [9-11]. The chemical 
shifts of the methylene groups in the ~- and B-protonated forms of the indolizines are 5.30- 
6.10 and 4.10-4.60 ppm, respectively. On the basis of these data, the signal with an in- 
tensity of two proton units at ~ 5.76 ppm in the spectrum of I (Table I) was assigned to the 
methylene group attached to Ca. 

Protonation of I-III leads to a shift of the C3-H signal and the signals of the CH3 
groups in the 2,4, and 7 positions to weak field. It should be noted that the change in the 
chemical shift of the proton attached to C3 in II~ and Ilia (A~3 = 1.53 ppm) exceeds the anal- 
ogous value for the proton in the 8 position (A~8 = 0.73 ppm) by a factor of approximately 
two. The same difference in the deshielding is observed for the methyl groups of the pyrimi- 
dine (A~2 = 0.53 ppm) and pyrrole (A~7 = 0.22 ppm) fragments. These results are in conformity 
with substantial "aromatization" and the associated increase in the effect of the ring cur- 
rents of the six-membered ring in the cations of the investigated compounds. A change in 
the multiplicity of the signals of the aromatic protons is observed on passing from the neu- 
tral molecules to the cations. Thus splitting of the C3--H signal by the protons of the 
C4--CH3 group is absent in the spectra of II~ and III=. The signal of the proton attached 
to Ce, which is a singlet in the spectrum of neutral molecule II, is a quintet in the spec- 
trum of the corresponding cation (Fig. i). The splitting is due to the SSC with C6--H 
(J6,e =1.2 Hz) and the protons of the CH3 group attached to C7 (Je• = 1.5 Hz). It 
should be noted that the Ca--H signal in the spectrum of II~ is considerably broadened be- 
cause of proton exchange, and additional splitting with the proton attached to C8 is absent. 
Deuterium exchange of the protons in the 6 and 8 positions is observed in the spectrum of a 
solution in CH3COOH/CF3COOD (2:3). The different rates of the process make it possible to 
record the Cs--H signal under conditions of complete exchange of the proton attached to Ca. 
This signal is in the form of a quartet; the Ca--CH3 signal is simultaneously converted to 
singlet (Fig. 2). The corresponding difference in themultiplicity of the Cs--H signal due 
to SSC with Ca--H and CT--CH= is found in the spectra of III and Ilia. 

The characteristic changes in the chemical shifts and multiplicities of the signal of 
the protons of the two-ring system observed on protonation of pyrrolopyrimidines at C5 can 

be Used to establish the protonation center in related systems. 

578 



T
A
B
L
E
 
I.
 

P
M
R
 
S
p
e
c
t
r
a
 
o
f
 
t
h
e
 
B
a
s
e
s
 
a
n
d
 
C
o
n
j
u
g
a
t
e
 
A
c
i
d
s
 
o
f
 
P
y
r
r
o
l
o
[
l
,
2
-
a
]
p
y
r
i
m
i
d
i
n
e
 
D
e
r
i
v
a
t
i
v
e
s
 
(
I
-
I
I
I
)
 

Su
bs

ta
nc

e 

II
 

P
er

ch
lo

ra
te

 
of

 
II

 

II
I 

S
ol

ve
nt

 

C
C

14
 

C
D

C
la

 
C

Fa
C

O
O

H
 

C
Fa

C
O

O
H

 
C

Fa
C

O
O

iI
 

H
2S

f)
,i 

(4
: 

1)
 

C
I)

C
I~

 
C

Fe
C

O
O

! 
1 

C
 F

~C
O

01
1 

C
F'

aC
O

O
I 1

 

11
2S

0.
~ 

6!
 :

 1
 ) 

C
F:

~C
O

O
I 

I 

C
F

aC
O

O
I 

I 

C
D

C
[:

: 
C

 Fa
C

..O
O

 ] I
 

Te
mp
.,
 *

C
 

25
 

25
 

25
 

-1
5 25

 

25
 

25
 

--
t5

 

25
 

2,
36

 s
 

2,
4~

 S
 

2,
90

 S
 

2,
93

 s
 

2,
95

 S
 

2,
35

 
2,

81
 

2.
90

 

2,
92

 

2,
92

 

2,
96

 
s 

2,
35

 
s 

2,
88

 
s 

6,
14

 q
 

6,
30

of
 g 

' 

--
t 

--
t 

6,
00

 q
 

7,
53

 s
 

7,
59

 
s 

7,
5~

 
s 

7,
60

 
s 

7,
68

 
s 

6,
O

0 
q 

7,
53

 
s 

C
h

em
ic

al
 

sh
if

ts
*,

 
5,

 p
pm

 

4 
6 

2,
42

 
d 

2,
50

 
d 

2,
97

 
s 

2,
98

 
s 

3,
00

 
s 

2,
73

 b
r 

3,
00

 s
 

3,
03

 

3,
05

 
s 

25
 

15
 

25
 

25
 

7 
L 

8 

7,
13

d 
I 

66
5d

 
7,

20
--

7,
50

 
61

81
 d

 
5,

76
 s

 (
2H

) 
7,

50
--

8,
00

 
5,

80
 s

 (
2H

) 
7,

50
--

8,
00

 
5,

85
 s

 
7,

50
--

8,
00

 

2,
65

 b
r 

1,
85

 d
 

5,
50

 q
 

1,
86

 d
 

5,
58

 
1,

87
 

5,
59

 
d 

2,
22

 b
r 

2,
48

 
d 

2,
50

 d
 

2,
51

 
d 

2,
48

 
d 

2,
51

 
d 

2,
55

 
q 

1,
43

 
t 

2,
77

 
q 

6,
23

 s
 

7,
00

 q
ui

nt
 

7,
05

 q
ui

nt
 

7,
07

 q
ui

nt
 

7,
05

 
qu

in
t 

7,
13

 
qu

in
t 

6,
28

 
s 

7,
00

 
q 

3.
05

 
s 

3,
07

 

2,
73

 
br

 
3,

00
 

s 

1,
88

 
d 

5,
58

 
q 

1,
90

 
d 

5.
63

 
q 

2,
67

 
br

 
1,

85
 

d 
5,

53
 

q 

6-
H

, 
8-

H
 

1,
5 

1,
5 

[,2
 

1,
2 

1,
2 

1,
2 

1,
2 

1,
2 

J,
 H
Z
 

a-
H

, 
7-

8c
~3

, 
4-

C
H

3 

0,
9 

0,
9 

0,
9 

1,
5 

1,
5 

1,
5 

1,
5 

1,
5 

0,
9 

1,
5 

~
A
b
r
r
e
v
i
a
t
i
o
n
s
:
 

s 
i
s
 
s
i
n
g
l
e
t
,
 
d 

i
s
 
d
o
u
b
l
e
t
,
 
t 

i
s
 
t
r
i
p
l
e
t
,
 
q 

i
s
 
q
u
a
r
t
e
t
,
 
q
u
i
n
t
 
i
s
 
q
u
i
n
t
e
t
,
 
a
n
d
 
b
s
 
i
s
 
b
r
o
a
d
 
s
i
g
n
a
l
.
 

*
T
h
e
 
s
i
g
n
a
l
 
i
s
 
o
v
e
r
l
a
p
p
e
d
 
b
y
 
t
h
e
 
p
r
o
t
o
n
s
 
o
f
 
t
h
e
 
p
h
e
n
y
l
 
g
r
o
u
p
.
 

6-
H

, 
6-

C
H

a 

7,
5 

7,
5 

7,
5 

7,
5 

7,
5 

7,
5 

~
7
 

-.
1 

~
D
 



3~H 10-N 

'~O'H 3-H 

c~HS s ~-c~ 2-cH 
3 4 ~ 9 3 

C 

7 

, .  

,ppm 
i t i 

Fig. 2. PMR spectra of 2,4-dimethyl-6,7,8,9- 
tetrahydropyrimido[l,2-a]indole (IV): a) in 
CDCI3; b) in CF3COOH. 

Thus the similar changes in the spectra of 2,4-dimethyl-6,7,8,9-tetrahydropyrimido[l-2 - 
a]indole (IV) on passing from the neutral molecule to the cation (Table 2) correspond to the 
addition of a proton to the carbon atom of the pyrrole ring in the 5a position (structure IV). 

Ira 

The Csa--H signal (6 = 5.33 ppm) is a quartet, which is due to SSC with the protons of the 
methylene group of the cyclohexane ring in the 6 position (J~ ~ = 9.7 Hz, Jn = = 6.0 Hz). The 
chemical shifts of the protons and the methyl groups of the pyrrolopy imide fragment in IV 
are extremely close to the corresponding values observed for Ia-IIIa. 

The appearance of signals that could be assigned to the N,- and C8-protonated forms is 
not observed in the spectra of any of the investigated compounds with time. Consequently, 
of the three possible structures of the conjugate acids, the a form is thermodynamically most 
favorable, and this is in conformity with the higher basicity of the C a atom as compared with 
N~ and C B. 

Whereas this may be associated to a considerable degree with a decrease in the basicity 
due to the --I effect of the bridge nitrogen atom in the case of pyrrolo[l,2-a]pyridazine, in 
the case of pyrrolo[l,2-a]pyrimidine the position of the cationoid center is apparently de- 
termined by the difference in the stabilities of the N and a(8) forms of the conjugate acid, 
which are characterized, respectively, by o-quinoid and benzenoid structures of the six-mem- 
bered fragments. In addition, it has been established for some pyrrolo[l,2-~]pyridazine de- 
rivatives [5] that the formation of a stable carbonium ion takes place through the N form of 
the conjugate acid. Signals of only the N-protonated form were present in the spectra of the 
perchlorates of these compounds immediately after dissolving in CFSCOOH at 25 ~ Complete 
conversion of the N form to the a form of the conjugate acid was observed with time. The 
spectra of CF3COOH solutions of the perchlorate of 2,4,6,7-tetramethylpyrrolo[l,2-a]pyrimi- 

TABLE 2. PMR Spectra of the 2,4-Dimethyl-6,7,8,9-tetrahydro- 
pyrmido[l,2-a]indole Base (IV) and Its Conjugate Acid 

Solvent 

CDCls 
CFsCOOH 

I t 
2,35!s [5 00 .g~[2 70 d 

6,98br 2'88 s 17'53 s [ 3'00 s 5 ,(32-3--H~ 6,20s J 0,9 
*Abbreviations: 
and b is broad. 

5 a - H ,  6 - C H ~  

9,7 (aa) 
6,0 (ae) 

s is singlet, d is doublet, q is quartet, 
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TABLE 3. lonization Constants of Pyrrolo[l,2-a]pyridine and Indolizine Deriva- 
tives in Nitromethane Relative to Diphenylguanidine 

Compound 

2,4-Dimethyl-7-phenylpyrrolo[l,2-a]pyrimidine (I) 
2,4,6,7-Tetramethylpyrrolo[l,2-a]pyrimidine (II) 
2,4-Dimethyl-6,7,8,9-tetrahydropyrimido[l,2-a]indole (IV) 
2-Methyllindolizine (V) 
2-Phenylindolizine (VI) 

lonization constants 
(APK a) 

5.90 
3.98 
3.83 
3.53 
5.97 

dine at --15 to 25 ~ are characterized exclusively by signals of the ~ form of the conjugated 
acid (Table i). A nitrogen-protonated form also was not observed in the protonation of pyr- 
rolo[l,2-a]pyrimidine derivatives I and II in CF3COOH at --15 ~ and in CF~COOH/H2SO~ (4:1) at 
25 ~ . 

The ionization constants, which characterize the basicities of the same center -- the 
carbon atom of the pyrrole fragment in the ~ position relative to the common nitrogen atom -- 
of I, II, and IV, as well as 2-methyl- and 2-phenylindolizine (V and VI) in nitromethane, 
are presented in Table 3. A comparison of the ApK a values of I, II, V, and VI shows that the 
basicity of this center decreases on passing from indolizine to pyrrolo[l,2-a]pyrimidine. 
Thus the ApK a values of I and VI are 5.97 and 5.90, respectively. It is known that the over- 
all effect of two methyl groups in the six-membered ring in the indolizine molecule [12] is 
2.5 pK a units. Consequently, the difference in the basicities of the C a atoms in the indo- 
lizine and pyrrolo[l,2-a]pyrimidine molecules is of the same order of magnitude. It has been 
shown for indolizine derivatives [12] that the methyl group lowers the basicity of a carbon 
atom bonded to it. At the same time, the ApK a value of I! increases by approximately two or- 
ders of magnitude as compared with I. This is evidently associated with the different elec- 
tronic effects of the substituents in the 7 position of these compounds. A considerable in- 
crease in the ionization constant is also observed on passing from 2-phenylindolizine to 2- 
methylindolizine (Table 3). 

EXPERIMENTAL 

The substituted 2,4-dimethy!pyrrolo[l,2-a]pyrimidines and 2,4-dimethyl-6,7,8,9-tetrahy- 
dropyrimido[l,2-a]indole were obtained by heating the corresponding 2,4-dimethyl-8-cyanopyr- 
rolo[l,2-a]pyrimidines and 2,4-dimethyl-10 cyano-6,7,8,9-tetrahydropyrimido[l,2-a]indole with 
100% phosphoric acid, during which the cyano group was readily eliminated. A detailed descrip- 
tion of the synthesis will be published later. 

The PMR spectra of 0.15 M solutions of the compounds in CC14, CDCI3, and CF3COOH were 
recorded with an S-60 spectrometer. The chemical shifts were measured on the ~ scale, and 
the internal standard was tetramethyl silane. 

The basicity constants (ApKa) of nitromethane solutions of the compounds were measured 
with a PHM-26 pH-meter (Radiometer, Denmark) by the method in [13]. 
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ANALOGS OF PURINE NUCLEOSIDES AND PURINE MONO- 

AND POLYNUCLEOTIDES. 

VI*. PHOSPHORYLATION OF 9-(I,5-DIHYDROXY- 

3-PENTYL)PURINES AND THEIR POLYCONDENSATION 

WITH I',5'-DIPHOSPHATES OF 6-SUBSTITUTED 

9-(I,5-DIHYDROXY-3-PENTYL)PURINES 

S. A. Giller#, A. Khettskhaim, I. A. Drizina, 
and T. M. Krukle 

UDC 547.857.07:542.953'945.32 

Phosphorylation of 6-substituted 9-(l,5-dihydroxy-3-pentyl)purines with 2-cyano- 
ethyl phosphate in the presence of dicyclohexylcarbodiimide in anhydrous pyridine 
gave their l',5'-diphosphates. Oligomers containing pyrophosphate and ester bonds 
were obtained by polycondensation of l',5'-diphosphates of 6-dimethylamino- and 
6-oxo-9-(l,5-dihydroxy-3-pentyl)purines with the appropriate 9-(l,5-dihydroxy-3- 
pentyl)purines. 

In the present research we studied thephosphorylation of our previously synthesized 
6-amino-, 6-dimethylamino-, and 6-oxo-9-(l,5-dihydroxy-3-pentyl)purines (I-III) with 2-cyano- 
ethyl phosphate. We obtained 9-(l,5-dihydroxy-3-pentyl)purine l',5'-diphosphates (IV-VI) 
when the reaction was carried out by the method in [2] in anhydrous pyridine in the presence 
of dicyclohexylcarbodiimide. As in the case of phosphorylation of l-(l,4-dihydroxy-2-butyl) 
thymine [3], the reagent molar ratio has a considerable effect on the yields of final pro- 
ducts IV-VI. Thus the maximum yields of l',5'-diphosphates IV-VI were obtained when a six- 
fold excess of 2-cyanoethylphosphate and, respectively, a 12-fold excess of dicyclohexylcar- 
bodiimide were used. l',5'-Diphosphates IV-VI were isolated by means of preparative chromato- 
graphy on Dowex 50W• 4 ion-exchange resin (H+ form). The considerable adsorption of purines 
on the ion-exchange resin makes it possible to efficiently separate the phosphoric acid, 
formed in the decomposition of 2-cyanoethyl phosphate, from the phosphorylation products and 
also makes it possible to separate diphosphorylated purines IV-VI from monophosphorylation 
products VII-IX and starting purines I-III, which are retained more strongly by the resin. 
However, the IV-VI isolated in this manner are not sufficiently homogeneous and require ad- 
ditional purification. Preparative rechromatography on A-25 QAE-Sephadex anion-exchange res- 
in proved to be the most effective method to achieve this. In addition, we were able to pu- 
rify V and VI by conversion to the corresponding barium salts, and VI was also purified by 
washing with ethanol. Monophosphorylation products VII and VIII were purified with columns 
by means of A-25 QAE-Sephadex resin. The chromatographically pure mono- and diphosphorylated 

~See [i] for communication V. 
#Deceased. 
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